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The iterative numerical algorithm of the pulse-spectrum technique (PST) is extended and 
developed to solve the multi-parameter inverse problems of one-dimensional evolutional 
partial differential equations (wave equations or diffusion equations). It has the practical 
advantages of universality, economy of programing, economy of data acquisition, and 
economy of computing costs. Without the real measurement data, numerical simulations are 
carried out only for the two-parameter inverse problems of a one-dimensional linear wave 
equation to test the feasibility and to study the general characteristics of the PST. It is found 
that the PST does give excellent results and it is as robust as in the single parameter case. 

INTRODUCTION 

The multi-parameter inverse problem of an evolutional partial differential equation 
(a wave equation or a diffusion equation) is to determine several unknown parameters 
or coefficients of the governing partial differential equation simultaneously as 
functions of space variables from information of the solution of the partial differential 
equation on a portion of the boundary surface or the interior. Its applications can be 
found in many branches of science and engineering, e.g., to infer the structure of 
Earth from seismic wave measurements in geophysical prospecting, to determine the 
nature of the irregularities of solid materials from wave measurements in 
nondestructive evaluation, to acquire the ocean structure from acoustic wave 
measurements in physical oceanography, to infer the transmissivity and the 
permeability from know data of the pressure and pressure gradient in oil reservoir 
and aquifer simulations, respectively, to determine the thermal properties of a 
nonhomogeneous solid from surface temperature measurements, etc. Since the 
solution of the multi-parameter inverse problem provides one with much more infor- 
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mation on the corresponding physical problem than the solution of the single 
parameter inverse problem, the development of an efficient and versatile numerical 
method for solving the multi-parameter inverse problems of the evolutional partial 
differential equations becomes very important. 

Up to now, there have been many efforts made by scientists, engineers, and 
mathematicians to develop methods for solving the multi-parameter inverse problems 
of the wave equations. For example, Nigul [l] and Nigul and Engelbrecht [2] have 
presented a perturbation method for solving a two-parameter inverse problem of a 
one-dimensional nonlinear wave equation, but it is limited to the layered media and 
lacks of generality. Raz [3] has developed a direct Born inversion technique for 
solving the two-parameter inverse problem of a three-dimensional linear wave 
quation; however, its requirement of the constant reference velocity and the lack of a 
systematic procedure to improve the accuracy of the approximate solutions post 
severe restrictions on the range of applicability of this method. Rose and Opsal 14) 
have gone a step further by using Born approximation to solve a three-parameter 
inverse problem of a system of three-dimensional linear wave equations; again it not 
only suffers the same deficiencies as the Born inversion technique of Raz but also 
requires a large amount of measurement data at different spatial locations to provide 
sufficient resolution to this method. Based on an inverse scattering theory, Coen [ 5 ] 
has presented a method for solving a two-parameter inverse problem of a two- 
dimensional linear wave equation; its lack of generality and the requirement of the 
precise knowledge of either the mximum value or the minimum value of the unknown 
parameters make this method impractical. On the other hand, there is very little or no 
efforts in the development of methods for solving the multi-parameter inverse 
problems of the diffusion equations. 

In this paper, the pulse-spectrum technique (PST) is extended for solving the multi- 
parameter inverse problems of the evolutional partial differential equations. The basic 
isea of the PST is that data are measured in the time-domain with compact support 
and the synthesis of the unknown parameters is carried out numerically in the 
complex frequency-domain by an iterative algorithm where each cycle of iteration 
consists of solving an elliptic boundary value problem (Laplace transformed initial 
boundary value problem) several times and a Fredholm integral equation of the first 
kind once. The pulse-spectrum technique was first introduced by Tsien and Chen ]6] 
for solving a single parameter one-dimensional inverse problem in fluid dynamics. 
Then it was further developed to have the capability of handling the noisy, poor 
distributed, and inadequately measured data by Chen and Tsien [7]. Later, the PST 
was used to solve single parameter inverse problems in one-dimensional elec- 
tromagnetic wave propagation by Tsien and Chen 181, in synthesis of nonuniform 
transmission lines by Chen and Weng [9] and in one-dimensional dynamical struc- 
tural identification by Chen and Lin [lo]. For solving inverse problems of nonlinear 
partial differential equations, it was extended successfully to solve a single parameter 
inverse problem of a one-dimensional nonlinear wave equation by Hatcher and Chen 
[ 111. The PST was also modified to a solve single parameter inverse problem of a 
one-dimensional linear diffusion equation by Chen and Liu [ 121. Moreover, for 
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solving inverse problems of the evoluational partial differential equations in arbitrary 
multi-dimensional domain, the PST has been used to solve single parameter inverse 
problems of a two-dimensional linear wave equation by Chen and Liu [ 131 and a 
two-dimensional linear diffusion equation by Liu and Chen [ 141. Finally, the 
discretized version of the iterative algorithm of the PST under idealized conditions 
was proved to converge quadratically by Chen [ 151 and the proof of the uniqueness 
of the solution in general will be given by Xie and Chen [ 161. 

It has been shown in the above-mentioned literature that the PST fares very well in 
regard to the following four practical criteria for the evaluation of any numerical 
method for solving inverse problems. 

(a) Universality criterion. Whether or not a numerical method which is 
effective in one space-dimensional and single-parameter inverse problems can be 
extended with similar success into higher space-dimensional and multi-parameter 
inverse problems? Whether or not a solution method which is effective for solving 
inverse problems of either hyperbolic type of partial differential equations or 
parabolic type of partial differential equations can be extended to solve the inverse 
problems of the other type of partial differential equations with similar success and 
minimum efforts? 

(b) Economy of programing effort criterion. The numerical method should be 
as close to the nondedicated program as possible, because the existing practices of 
programing new dedicated numerical methods for every special type of problems can 
be extremely expensive in many practical circumstances. Furthermore, the computer 
code (program) should also contain (as many as possible) the modules where the 
canned subroutines can be readily called upon. 

(c) Economy of data acquisition criterion. The numerical method should be 
able to keep the difficulties and the cost expenditure of acquiring or measuring the 
necessary data ffor a successful calculation to minimum. 

(d) Economy of computing cost criterion. The numerical method should keep 
the cost of IO and CPU times and memory storage to a minimum. 

The PST fares very well in regard to the universality criterion. This is because the 
finite difference method or the finite element method is just as adaptable to solve any 
higher dimensional elliptic boundary value problem with arbitrary finite domain as to 
solve a one-dimensional boundary value problem and the Tikhonov’s regularization 
method is also as adaptable to solve any higher dimensional Fredholm integral 
equation of the first kind as to solve the one-dimensional case. Since the synthesis 
procedure of the PST is carried out in the frequency-domain where the elliptic partial 
differential equations obtained by Laplace transforming the wave equation or the 
diffusion equation are very similar, the PST can be used to solve inverse problems of 
both types of the evolutional equations with trivial changes in the computer code of 
PST. 

The programing for the PST is basically nondedicated, because, as mentioned 
above, the change-over from solving the inverse problems of a class of linear hyper 
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bolic partial differential equations to solving the inverse problems of a class of 
parabolic partial differential equations is simply a matter of changing a few 
instructions in the general elliptic solver. Furthermore, one does not have to program 
a subroutine for the elliptic equation solver, for there are a abundance of the 
difference and finite element computer codes for solving general elliptic boundary 
value problems available in the public domain. Hence the PST fares very well in 
regard to the economy of programing effort criterion. 

As it has been demonstrated in [ 13, 141, the measurement data are needed only at 
a small portion of the boundary surface or in a small region of the interior for the 
PST to solve inverse problems successfully. Hence the PST again fares rather well in 
regard to the economy of data acquisition criterion in comparison with other 
methods. 

Finally, the PST seems also to fare rather well in regard to the economy of 
computing cost criterion. However, the actual computing costs depend very much on 
the particular computer hardwares and softwares, and one cannot be sure of this until 
a bench mark comparison test is performed. Nevertheless, a new automatic adaptive- 
grid method will be developed for the PST so that maximum accuracy is achieved 
with a minimum number of spatial grid points. 

In this paper, the capability of the PST for solving multi-parameter inverse 
problems of the evolutional partial differential equations is demonstrated. For 
simplicity, the formulation of the extended PST is presented only for the inverse 
problems of a one-dimensional evolutional partial differential equation. In particular, 
numerical simulations are carried out for two-parameter inverse problems to test the 
feasibility and to study the intrinsic characteristics of the PST without the real 
measurement data. Finally, a comprehensive discussion of the numerical results and 
their implication in actually implementing the PST are given. 

Numerical Algorithm (Pulse-Spectrum Technique) 

Consider the following initial-boundary value problem of a one-dimensional linear 
evolution equation, 

a{k(x) au/axj/ax + MU - a(x) au/at -P(X) ak/atz = 0, O<x<l,O<t<co, 

U(X, 0) = a+ oyat = 0, ~644 = e(t), and 41, t> =f@>, (1) 

where k(x), a(x), and p(x) are positive functions; k(x) is continuous, a(x), p(x), and 
p(x) are piecewise continuous. 

Here the inverse problem is to determine the unknown coefficients k(x), a(x), p(x), 
and p(x) from the known initial conditions, the known boundary conditions e(t) and 
f(t), and the additionally measured auxiliary data, 

au(o, tyax = h,(t), aq, tyax = h2(t), 

4x,, t> = h,(t) and u(x2, t) = h4(t), 0 < x1 #x2 < 1. 
(2) 
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Assuming that the initial-boundary data and the auxiliary data are all Laplace 
transformable, the PST calls for the transformation of (1) and (2) so that the entire 
system is transformed from the time-domain to the complex frequency-domain, and 
the corresponding transformed system is 

a( k(x) avpx}/ax + P(x) v - sa(x) v - s2p(x) u = 0, o<x< 1, 

v(0, s) = E(s) and u(L s) = F(s), 
(3) 

and 

dv(O, s)/dx = H,(s), &I( 1, s)/&C = H,(s), 

u(x, 3 s) = H,(s) and V(X*,S)=H&), O<x,#x*< 1, 
(4) 

where u(x, ~1, E(s), F(s), H,(s), H2(s), ff,(s), and H4(s) are the Laplace transfor- 
mations of u(x, t), e(t), f(t), h,(t), h,(t), h,(t), and h4(t), respectively. Now, the 
inverse problem is to determine k(x), a(x), j?(x), and p(x) from E(s), F(s), H,(s), 
H,(s), ff&), and H&j. 

The iterative numerical algorithm begins by setting 

2) llfl =v,+dv,, k,,,=k,+dk,, 

a nt1= a,+da,, Pn+l=Pn+&l, n = 0, 1) 2, 3 )...) 
(5) 

and 

P "+l=Pn+~P,, 

where k,(x), a,(x), PO(x), and p,,(x) are the initial guesses for the unknown coef- 
ficients k(x), a(x), p(x), and P(X), respectively, and II Jv,, II < II u, II, II ak, II < II k, II, 
IIkJ < IlaA Wll < IIPA and VP,II < IIPJ S ince the unknown coefficients can be 
measured directly at the two end points, without loss of generality one can assume 
that these coefficients are known only at the two end points. These conditions are not 
crucial to the success of PST, but they do make the computation easier. 

Upon substituting (5) into (3) and neglecting terms of order 6* and higher, one 
obtains a system for v,, 

a(k, ~v,,/~x)/~x + P,(x>v, - sa,(x)v, - s2pn(x)vn = 0, o<x< 1, 

vn(O, s) = E(s) and UJl, s) = F(s), 
(6) 

and a system for &I,,, 

i?(k, ~~Sv,/~x)/~x + p,(x) &I, - sa,(x) 6v, - s2pn(x) &I,, 

= s26p,(x)v, + sda,(x)v, - G/~,(x)v, - 3(6k,, c%,/~x)/~x, 0 < x < 1, (7) 

6u,(O, s) = &I,( 1, s) = 0. 
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By using the method of Green’s function, the two-point boundary value problem 
(7) can be changed to a Fredholm integral equation of the first kind which relates 
%,(x), ~a&>, W,(x), and JP,,(x) to 6v,(x, s) as 

I^ ’ {s’Sp 
0 

nun + S&V, - %v, - a(%, ~v,/~x’)/~x’) G,(x, x’, s) dx’ = Sv,,(x, s), (8) 

where G,(x, x’, s) is the Green’s function of the differential operator (7) and it can be 
computed numerically in general. 

After replacing the v,+, at the right-hand side of (8) by v for the purpose of 
accelerating the rate of convergence and a simple integration by parts, one obtains 
the integral relation, 

-’ G,(x, x’, s)v,, . (s’dp, + sSa, - SP,) + 
cYG,(x, x’, s) av, 

ax, ,,,6k,, dx’ 
! 

= v(x, s) - UJX’ s). (9) 

Upon differentiating (9) with respect to x once and setting x = 0, 1 and setting x = x, 
and x2 in (9) one obtains, respectively, a system of four Fredholm integral equations 
of the first kind for the four unknowns 6k,(x), &I,(X), S/I,(x), and dp,(x) with the 
help of the auxiliary data (4), 

v, . (s26p, + &a, - S/3,) + i’G,r,t:’ ‘) 2 Sk,,/ dx’ 

dG,( 1, x’, s) 
3X 

v, . (s*dp, + saa, - SD,) + “‘G~~~~~’ ‘) 2 6k, 1 dx’ 

=H*@- 
av,(l, s> 

ax 3 (11) 

=,(x,, x’, s) av,, 
’ G,,(xl,x’,s)v,~ (s2~p,,+sSa,-~AJ+ ax, &kll dx’ 

i 

= ff&) - v,(x, 3 s), (12) 

’ Gn(x2, x’, s) u,, . (s*&,, + da,, - SD,) + 
aG,(x,, x’, s) au, 

ax, =6k, dx’ 
i 

= H4(S) - u,(xz 3 s). (13) 

Equations (S), (6), (lo)-(13) form the basic structure for each iteration in the 
iterative numerical algorithm of PST. Similar to the cases of single parameter inverse 
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problem [6-141, a numerical integration subroutine is first used to evaluate the 
Laplace transforms E(s), F(s), H,(s), H,(s), H,(s), and HA(s) at a discrete set of 
s = sj, j = 1, 2, 3 ,..., J. Then these discrete values will be used to solve Eqs. (6), 
(lo)-(13) and the Green’s function of the differential operator (7) numerically. The 
two-point boundary value problem (6) and Green’s function of (7) can be solved by 
simply using a second-order finite difference method. The system of four Fredholm 
integral equations of the first kind can be discretized by simply using the rectangle 
rule; it is then solved by using the Tikhonov’s regularization method [ 171. 

The essence of the first cycle of iteration is given in the following diagram and the 
procedure for other cycles is exactly the same: 

r-~- Initial guesses: k,(x), a,(k), p,( x and P,(X) 1 ), 

By used a finite difference method, one solves the two-point boundary 
value problem (6) and the Green’s function of (7) for different values of 
s = sj, j = 1, 2, 3 ,..., J, to obtain {uO(x, sj)) and (Go(x, x’, sj)}. 

I I 

The derivatives of {v,,(x, sj)} and 

By using the Tikhonov’s regularization method, one solves the discrete 
version of the system (lOt(13) with s = sjr j = 1, 2, 3,..., J, to obtain 
&,(x), b,(x), M,,(x>, and &,,(x). 

t 

From (5), one obtains k,(x), o,(x). /I,(x), and p,(x). 

It is important to notice that each cycle of iteration consists basically of first solving 
the direct two-point boundary values problem (6) and the Green’s function problem 
of (7) J times each and then solving the system of Fredholm integral equations of the 
first kind (lo)-( 13) once. 

NUMERICAL SIMULATION 

In order to test the feasibility and to study the general characteristics of the PST 
iterative algorithm for solving the multi-parameter inverse problems of the one- 
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dimensional evolutional partial differential equations without the real measurement 
data, the following numerical simulation procedure will be carried out: 

First, one chooses k*(x), a*(x), /3*(x), and p*(x) which are supposed to represent 
the correct unknown coefficients k(x), a(x), /I(x), and p(x), respectively. One also 
chooses the boundary functions e(t) andf(t) which are supposed to represent a part 
of measured data and then their Laplace transforms E(s) and F(s) are numericaly 
computed for a chosen discrete set of s = sj, j = 1, 2, 3,..., J. Next, the boundary value 
problem (3) is solved for each sj, j = 1, 2, 3 ,..., J, by using a simple finite difference 
method, and then the supposedly measured auxiliary data II,( i = 1,2, 3,4, 
j = 1) 2, 3 )...) J, can be generated by using simple finite difference approximations. To 
start the iterative algorithm, k,(x), a,Jx), p,,(x), and p,,(x) are assumed. Upon solving 
Eqs. (5), (6), (lW(l3) numerically, one obtains k,(x), a,(x), p,(x), and pr(x). Then 
in a similar manner I&(X), al(x), &(x), and p2( x can be obtained. One continues this ) 
procedure until finally an acceptable numerical limits kJx), a,(x), pN(x), and p:(x) 
are reached. Other than the truncation, round-off, numerical integration, and finite 
difference approximation errors in both generating the numerical data and computing 
kJx), aN(x), p,(x), and pN(x), the L, multi-function norm I,,,, = {Ii, + Ii,V + 
If& + If&,} ‘j2, where Zi,, = st I#* - 4, I* dx, can be used as a criterion for evaluating 
the performance of the iterative algorithm of the PST. 

For economical reasons, the numerical simulation here is carried out only for the 
case of two-parameter inverse problems of the one-dimensional evolutional partial 
differential equations, i.e., the unknowns are either k(x) and a(x) (the case of 
diffusion equation) of k(x) and p(x) (the case of wave equation). Since our past and 
present experiences have shown that the PST can solve the inverse problems of the 
diffusion equation and the wave equation with equal proficiency, it suffices to solve 
just one of them. Here a large class of k*(x), k,(x), p*(x), and pO(x) are used in the 
numerical simulation. The closed interval 0 <x < 1 is divided into fourteen equal 
subintervals and sj = j, j = 1, 2, 3 ,..., 9, are chosen in our discretization. Moreover, a 
square pulse is chosen for e(t) andf(t) is set to zero for simplicity. 

The numerical results are plotted in Figs. 1-12. The maximum norms of k*(x) - 
k,(x), k*(x) - k,(x), p*(x) - pO(x), and p*(x) - pN(x) for all cases can be estimated 

FIG. 1. Comparison of the calculated k,(x) and p,(x)(.‘.) and the exact k*(x) and p*(x) (-), with 
the initial guesses k,(x) and pO(x) (---). 
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FIG. 2. Same description Fig. 1 except N = 14. 
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FIG. 3. Same description Fig. I except N = 12. 

FIG. 4. Same description Fig. 1 except N = 4. 

FIG. 5. Same description Fig. 1 except N = 5. 
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FIG. 6. Same description Fig. 1 except N = 9. 
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FIG. I. Same description Fig. 1 except N = 15. 

FIG. 8. Same description Fig. 1 except N = 15. 

FIG. 9. Same description Fig. 1 except N = 10. 



ITERATIVE NUMERICAL ALGORITHM 439 

/--- 
/ -\ 

/ \ 
. . . \ 

. 

k 

C”““~’ 
‘1 .- 

x 

0 0.5 1 

FIG. 10. Same description Fig. 1 except N= 16. 
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FIG. 11. Same description Fig. 1 except N = 3. 

FIG. 12. Same description Fig. 1 except N = 12. 

from the graphs in these figures. The iterative procedure is set to stop as soon as 
lIDI+ I - I,,1 < 0.01 and then (n + 1) = N, because it will make very little difference 
in plotting the numerical results. As a typical example, plots of I,, , Zkn, and I,, as 
functions of n, for example, in Fig. 10 are given in Fig. 13. The L, norms I,,, ZzN, 

ZkO, ZkN, ZO,,, and ID,,, for all cases are tabulated in Table I. 
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FIG. 13. I,,, and ID,, as functions of n for the example in Fig. 10 are shown. I,, (-), I,, (---), and 

I,“(...). 

TABLE I 

Fig. No. N I kll I kh’ I ON I x0 Iz,v 

1 9 1.395 0.058 1.395 0.045 1.972 0.073 
2 14 1.395 0.151 1.323 0.109 1.922 0.187 
3 12 1.395 0.243 1.323 0.313 1.922 0.396 
4 4 1.086 0.158 1.086 0.150 1.536 0.217 
5 5 1.399 0.099 1.339 0.060 1.894 0.116 
6 9 0.986 0.015 0.986 0.006 1.394 0.017 
1 15 0.935 0.349 0.986 0.115 1.359 0.368 
8 15 0.680 0.023 2.020 0.026 2.131 0.035 
9 10 3.520 0.062 6.330 0.094 7.243 0.113 

10 16 0.670 0.023 5.510 0.038 5.541 0.044 
11 5 0.810 0.034 3.520 0.010 3.612 0.035 
12 10 0.217 0.018 0.697 0.038 0.730 0.042 
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DISCUSSION 

Although only a small number of computational zones (both in x and s) are used 
in the numerical simulation here, the numerical results in Figs. 1-12 have 
demonstrated that the PST iterative numerical algorithm does give good results in 
solving the multi-parameter inverse problems of a one-dimensional linear evolutional 
partial differential equation, and in particular, every jump in the unknown parameters 
can be successively approximated within four spatial grid points. It is clear that the 
PST for solving the multi-parameter inverse problems is as robust as it is for solving 
the single parameter inverse problems [6-141. However, for the multi-parameter 
inverse problems the convergence of the first few iterates of individual unknown 
parameter is not necessarily monotonic in the L, single function norm whereas it is 
monotonic for the single parameter inverse problems, nevertheless here the 
convergence is monotonic in the L, multi-function norm (Fig. 13). 

The accuracy of the numerical algorithm can be improved greatly if a larger 
number of computational zones in x and s are used; more efforts are made in 
computing each individual step and in discretization of the partial differential 
equation and the integral equations in the numerical algorithm; and the values of sj 
are properly chosen in solving the Fredholm integral equations of the first kind. Of 
course, it is counterproductive for one to increase overwhelmingly the number of 
computational zones in x and s, for it is well known that this will makes the 
discretized version of the Fredholm integral equation of the first kind more ill- 
conditioned. 

To be sure, the PST iterative algorithm is not a method for settling the question of 
the uniqueness of the solution of an inverse problem. The general proof of uniqueness 
of the solution of the inverse problem, done quite differently, will be presented 
elsewhere [ 161. The approximate solution obtained by using the PST is unique in the 
sense of being the closest one to the initial guess in the L, norm. Moreover, it is clear 
from our numerical simulation that for different initial guesses the iterations converge 
to slightly different numerical limits. However, if this numerical algorithm is 
reasonably robust, and the PST indeed is, then any one of the approximate solutions 
will be an acceptable approximation. This numerical computation phenomenon can 
be attributed to the accumulation of those nonnegligible errors in each iterate where 
the ill-posed Fredholm integral equation of the first kind is solved. 

It is clear that the PST again fares very well in regard to the four practical criteria 
for the evaluation of any numerical method (stated in the Introduction) for solving 
the multi-parameter inverse problems of the evolutional partial differential equations. 
The only difference here is that more measurement data on the boundary or the 
interior are needed for solving the multi-parameter inverse problems. Efforts in 

extending the PST iterative numerical algorithm to solve multi-parameter inverse 
problems of a system of two- and three-dimensional coupled wave equations (elastic 
wave equation) are well under way and their results will be reported in the near 
future. 
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